MicroRNA-126 affects rheumatoid arthritis synovial fibroblast proliferation and apoptosis by targeting PIK3R2 and regulating PI3K-AKT signal pathway
نویسندگان
چکیده
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation and destruction of the joints as well as an increased risk of cardiovascular disease. RA synovial fibroblasts (RASFs) are involved in the progression of RA and release pro-inflammatory cytokines. On the other hand, microRNAs (miRs) may help control the inflammatory response of immune and non-immune cells. Therefore, our study used lentiviral expression vectors to test the effects of miR-126 overexpression on RASF proliferation and apoptosis. Luciferase experiments verified the targeting relationship between miR-126 and PIK3R2 gene. The co-transfection of anti-miR-126 and PIK3R2 siRNA to RASFs were used to identify whether PIK3R2 was directly involved in proliferation and apoptosis of miR-126-induced RASFs. Real-time polymerase chain reaction (PCR) was used to detect miR-126 and PIK3R2 expressions. MTT assay was used to detect cell proliferation. Flow cytometry was used to detect cell apoptosis and cell cycle. Western blotting was used to detect PIK3R2, PI3K, AKT and p-AKT proteins. After Lv-miR-126 infected RASFs, the relative expression of miR-126 was significantly enhanced. MiR-126 promoted RASF proliferation and inhibited apoptosis. Levels of PIK3R2 decreased while total PI3K and p-AKT levels increased in RASFs overexpressing miR-126. Co-transfection of anti-miR-126 and PIK3R2 siRNA also increased PI3K and p-AKT levels as well as RASF proliferation and reduced apoptosis, as compared to anti-miR-126 treatment alone. Finally, luciferase reporter assays showed that miR-126 targeted PIK3R2. Our data indicate that miR-126 overexpression in RASFs inhibits PIK3R2 expression and promotes proliferation while inhibiting apoptosis. This suggests inhibiting miR-126 may yield therapeutic benefits in the treatment of RA.
منابع مشابه
MiR-126 regulates proliferation and invasion in the bladder cancer BLS cell line by targeting the PIK3R2-mediated PI3K/Akt signaling pathway
OBJECTIVE To assess whether microRNA-126 (miR-126) targets phosphatidylinositol 3-kinase regulatory subunit beta (PIK3R2) and to determine the potential roles of miR-126 in regulating proliferation and invasion via the PIK3R2-mediated phosphatidylinositol 3 kinase (PI3K)-protein kinase B (Akt) signaling pathway in the human bladder BLS cell line. MATERIALS AND METHODS A recombinant lentivirus...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملInhibition of microRNA-21 decreases the invasiveness of fibroblast-like synoviocytes in rheumatoid arthritis via TGFβ/Smads signaling pathway
Objective(s): MicroRNA-21 (miR21) is aberrantly elevated in rheumatoid arthritis (RA) patients, the significance of this microRNA in RA pathogenesis and treatment, however, has not been investigated. In this study, by using RA-derived fibroblast-like synoviocyte (FLS) cells as a model, we investigated the effect and corresponding mechanism of miR21 inhibition on FLSs invasion. Materials and Met...
متن کاملmicroRNA-29a functions as a tumor suppressor in nasopharyngeal carcinoma 5-8F cells through targeting VEGF
Objective(s): microRNA-29 (miR-29) family miRNAs have been mentioned as tumor suppressive genes in several human cancers. The purpose of this study was to investigate the function of miR-29a in nasopharyngeal carcinoma (NPC) cells. Materials and Methods: Human NPC cell line 5-8F was transfected with mimic, inhibitor or scrambled controls...
متن کاملmicroRNA 126 Inhibits the Transition of Endothelial Progenitor Cells to Mesenchymal Cells via the PIK3R2-PI3K/Akt Signalling Pathway
AIMS Endothelial progenitor cells (EPCs) are capable of proliferating and differentiating into mature endothelial cells, and they have been considered as potential candidates for coronary heart disease therapy. However, the transition of EPCs to mesenchymal cells is not fully understood. This study aimed to explore the role of microRNA 126 (miR-126) in the endothelial-to-mesenchymal transition ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016